
A survey on the Minimum Linear Arrangement
problem

George Kallitsis
Electrical and Computer Engineering department

National Technical University of Athens
Athens, Greece

el17051@mail.ntua.gr

Iliana Maria Xygkou
Electrical and Computer Engineering department

National Technical University of Athens
Athens, Greece

el17059@mail.ntua.gr

Abstract—The Minimum Linear Arrangement problem has
been proven to be NP-complete for arbitrary graphs. However,
it can be simplified by specifying the type of graph. There have
been found efficient algorithms by applying restrictions to the
input or the output, and there exist approximation techniques
trying to achieve the optimal.

Index Terms—MLA, optimal, trees, approximation

I. INTRODUCTION

In general, the minimum linear arrangement problem is
defined as follows. Given a graph G(V,E) where E with
|E| = m and V with |V | = n are the sets of edges and
vertices respectively, a permutation π (or a linear ordering
of the vertices or an one-dimensional layout) is defined as
π : V → {1, 2, ..., n}. The Minimum Linear Arrangement
problem requires to find the permutation π s.t. the below
objective function is minimized:∑

(i,j)∈E

|π(i)− π(j)|

It’s been proven that this problem is NP-complete for the
general case. The solution is trivial when G is a complete
graph, since every arrangement is optimal. However, when G
is a rooted or undirected tree, complete bipartite, hypercube,
rectangular or square mesh, etc, there exist algorithms of
polynomial time.
Solving this problem can assist in designing of error-correcting
codes, minimization of wire’s length at the placement phase in
VLSI design, biology, graph drawing and reordering of large
sparse matrices.
In this paper, we are going to present some existing algo-
rithms which solve the MLA problem, some approximation
techniques which attain a near-optimal arrangement and finally
we are going to measure the quality of some heuristics by
executing experiments and simulations on random and real
graphs.

II. EXISTING ALGORITHMS

We are going to order some existing algorithms with regards
to their input.

A. Small number of vertices

The first algorithm [1] defines a formulation of the problem
as a mathematical program with a linear objective and nonlin-
ear equality constraints. The Linear Programming model and
in particular a mixed-integer linear programming formulation
is described below:

Minimize{
n∑
p=1

n∑
q=1,q>p

(q − p)
∑

(i,j)∈E

zipjq} (1)

n∑
i=1

γij = 1, (1 ≤ j ≤ n) (2)

n∑
j=1

γij = 1, (1 ≤ i ≤ n) (3)

γij ∈ {0, 1} (4)

zipjq ≥ 0, (1 ≤ i, p, j, q ≤ n; q > p; j ̸= i) (5)

n∑
j=1,j ̸=i

zipjq = γip, (1 ≤ i, p, q ≤ n; q > p) (6)

n∑
j=1,j ̸=i

zjqip = γip, (1 ≤ i, p, q ≤ n; q < p) (7)

∑
q>p

zipjq +
∑
q<p

zjqip = γip, (1 ≤ i, p, j ≤ n; j ̸= i) (8)

where:

zipjq = γipγjq

γij =

{
1, if label j is assigned to vertex i, i.e. π(i) = j
0, otherwise

This algorithm was applied to graphs derived from Νugent
distance matrices where |V | = n ∈ {12, 15, 16, 17, 23} and
found to be time-efficient. However, as it is the case for
almost every LP-model, the time complexity of this algorithm
is exponential. As a result, it should be used when the number
of vertices is relatively small.

B. Undirected trees (or rooted trees)

For this type of input we are going to order some existing
algorithms with regards to their output.

1) No constraints in output: There are two widely-known
algorithms which were devised during 1980-1990s.
The first one is by Shiloach [2] and exploits the ability of
trees to recursively break down to smaller subtrees, with
regards to the number of vertices, to which the same algorithm
can be applied, and their optimal linear arrangements can be
combined to compute the minimum linear arrangement of the
original tree. The algorithm is structured as follows:

1) Find vertex v∗ s.t. ni ≤ ⌊n2 ⌋ where Ti, i ∈ {0, ..., k}
is the subtree of Tmodv∗ i.e., the subtree that results
from removing v∗. In an anchored tree, v∗ is the vertex
at which the anchor is connected to the tree.

2) Find minimum arrangements π0 for
−→
T (v0) and π′

0 for←−−−−
T − T0(v∗) (or for T − T0 if T is anchored.).

3) Compute Cα(A):

Cα(A) = C[π, T (α)] ={
C[π,

−→
T 0(v0)] + C[π,

←−−−−
T − T0(v∗)] + 1, if α = 0

C[π,
−→
T 0(v0)] + C[π, T − T0] + n− n0, if α = 1

4) Compute pα: pα is the greatest integer s.t.

ni > ⌊
n0 + 2

2
⌋+ ⌊n∗ + 2

2
⌋ for i = 1, ..., 2pα − α, where

n∗ = n−
2pα−α∑
i=0

ni

If pα = 0 go to step 9.
5) Find minimum arrangements πi, i = 1, .., 2pα − α,

for
−→
T i(vi), i = 1, 3, ..., 2pα − 1, and for

←−
T i(vi),

i = 2, 4, .., 2pα − 2α, and a minimum arrangement π∗
for T − (T1, ..., T2pα−α).

6) Compute Cα(B):

Cα(B) = C[π, T (α)] =
2pα−1∑

i=1,i is odd

C[π,
−→
T i(vi)] +

2pα−2α∑
i=1,i is even

C[πi,
←−
T i(vi)]+

C[π, T∗] + Sα,where
S0 = (n3 + n4) + 2(n5 + n6) + ...+ (p0 − 1)(n2p0−1

+n2p0) + p0(n∗ + 1)

and

S1 = (n2 + n3) + 2(n4 + n5) + ...+ (p1 − 1)(n2p1−2

+n2p1−1) + p1(n∗ + 1)− 1

7) If Cα(A) ≤ Cα(B) go to step 9.
8) The arrangement πm of type

(T1, T3, ..., T2pα−1|v∗|T2pα−2α, ..., T4, T2) determined
by πi on Ti for i = 1, ..., 2pα − α and by π∗ on
T − (T1, ..., T2pα−α) is a minimum arrangement of T ,
and C[π, T (α)] = Cα(B). Stop.

9) The arrangement πm of type (T0|v∗) determined by π0
on T0 and by π′

0 on T − T0 is a minimum arrangement
of T , and C[π, T (α)] = Cα(A). Stop.

This algorithm has time complexity O(n2.2).
Recently, an error was found in Shiloach’s algorithm by J. L.
Esteban and R. Ferrer-i-Cancho [3]. During their experiments
using the above algorithm, they observed that it was producing
wrong results for complete binary trees with more than 5
levels. It’s shown that there is a closed-form expression for
the minimum value of the objective function for trees with
k ≥ 1 levels:

Dmin = min
∑

(i,j)∈E

|π(i)− π(j)| = 2k(
k

3
+

5

18
)+(−1)k 2

9
−2

(9)
According to equation 9, for k = 5 Dmin = 60, but applying
Shiloach’s algorithm indicates that Dmin = 46. In order to
address this issue and ensure that correct results would be
produced in any case of undirected trees, they proposed two
possible corrections:

1) By redefining S0 and S1:

S0 = (n3 + n4) + 2(n5 + n6) + ...+ (p0 − 1)(n2p0−1

+n2p0) + p0(Z + 1)

and

S1 = (n2 + n3) + 2(n4 + n5) + ...+ (p1 − 1)(n2p1−2

+n2p1−1) + p1(Z + 1)− 1

where

Z = n∗ + n0

2) By redefining n∗ and subsequently pα:

n∗ = n−
2pα−α∑
i=1

ni

and pα is the greatest integer s.t.

ni > ⌊
n0 + 2

2
⌋+ ⌊n∗ − n0 + 2

2
⌋ for i = 1, ..., 2pα − α

Some years later, Chung [4] suggested two algorithms for
computing the minimum linear arrangement of an undirected
tree T or a rooted tree T ∗, which were very similar to the
previous one but managed to be more time-efficient.
The first one, which resembles Shiloach’s algorithm but im-
proves it by conducting a more fastidious complexity analysis,
is presented below:

1) If the tree has a root r, go to step 6.
2) Find a center u of T (same as vertex v∗ in Shiloach’s

algorithm).
3) Determine subtrees T0, T1, ..., of T − u (same as

Tmodv∗ in Shiloach’s algorithm) where |V (Ti)| = ti
and t0 ≥ t1 ≥ Find the greatest positive integer q
s.t.

t2q ≥ ⌊
t0
2
+ 1⌋+ ⌊z

2
+ 1⌋

where

z = n−
2q∑
i=0

ti.

If no q satisfying the above conditions is found, set q =
−1.

4) If q ̸= −1, go to step 5. Else, compute the minimum
linear arrangements π(T ∗

0) and π(T ∗ − T0), and their
costs g(T ∗

0) and g(T ∗ − T0) respectively. Then, set
g(T ∗) = C(T0 :) = g(T ∗

0)+g(T
∗−T0)+1 and combine

π(T ∗
0) and π(T ∗ − T0) to form π(T) = π(T0 :). Stop.

5) Compute the minimum linear arrangements and their
costs of T ∗

i and Ti ∪ Z where Z = T −
⋃2q
i=0 Ti for

i = 0, 1, ..., 2q. Define Qi = {0, 1, ..., 2q} − {i} and
define ij as the jth smallest integer contained in Qi.
Determine:

f(T) = min
i=0,1...,2q

C(Ti2 , Ti4 , ..., Ti2q : Ti2q−1
, ..., Ti1)

and corresponding linear arrangement π(T). Stop.
6) Determine subtrees T0, T1, ..., of T ∗ − r where
|V (Ti)| = ti and t0 ≥ t1 ≥ Find the greatest integer
p s.t.:

t2p+1 ≥ ⌊
t0
2
+ 1⌋+ ⌊y

2
+ 1⌋

where

y = n−
2p+1∑
i=0

ti.

If no p satisfying the above conditions is found, set p =
−1.

7) If p ̸= −1, go to step 8. Else, compute the minimum
linear arrangements π(T ∗

0) and π(T−T0), and their costs
g(T ∗

0) and f(T − T0) respectively. Then, set g(T ∗) =
C(: T0) and π(T ∗) = π(: T0). Stop.

8) Compute g(T ∗
i) and f(Ti ∪ Y), for i = 0, ..., 2p + 1,

where Y = T −
⋃2p+1
i=0 Ti. Define Pi = {0, 1, ..., 2p +

1} − {i} and define ij as the jth smallest integer
contained in Pi. Determine:

g(T ∗) = min
i=0,1,...,2p+1

C(Ti2 , Ti4 , ..., Ti2p : Ti2p+1
, ..., Ti1)

and corresponding linear arrangement π(T ∗). Stop.
This algorithm has O(n2) time complexity.
Apart from the previous algorithm, Chung proposed a second
one which improves the first one by changing the way the
minimum linear arrangements of subtrees are used during
recursion for the sake of efficiency, and is divided into three
parts:
Part 1: Finding a minimum linear arrangement and its cost for
an undirected tree T .

1) Find a center u of T .
2) Determine subtrees T0, T1, ..., of T−u where |V (Ti)| =

ti and t0 ≥ t1 ≥ Find the greatest positive integer
q = q(T) s.t.

t2q ≥ ⌊
t0 + 2

2
⌋+ ⌊z + 2

2
⌋

where

z = n−
2q∑
i=0

ti.

If no q satisfying the above conditions is found, set q =
−1.

3) If q ̸= −1, go to step 4. Else, compute the minimum
linear arrangements π(T ∗

0) and π(T ∗ − T0), and their
costs g(T ∗

0) and g(T ∗−T0) respectively. Then, compute
C(T0 :) = g(T ∗

0) + g(T ∗ − T0) + 1, f(T) = C(T0 :)
and π(T) = π(T0 :).Stop.

4) Find h(T ∗
i , Z

∗) for i = 0, 1, ..., 2q, where Z∗ = T ∗ −⋃2q
i=0 Ti. Define Qi = {0, 1, ..., 2q} − {i} and define ij

as the jth smallest integer contained in Qi. Determine:

f(T) = min
i=0,1...,2q

C(Ti2 , Ti4 , ..., Ti2q : Ti2q−1
, ..., Ti1)

and corresponding linear arrangement π(T). Stop.
Part 2: Finding the minimum linear arrangement and its cost
for a rooted tree T ∗ with root r.

1) Determine subtrees T0, T1, ..., of T ∗ − r where
|V (Ti)| = ti and t0 ≥ t1 ≥ Find the greatest integer
p = p(T ∗) s.t.:

t2p+1 ≥ ⌊
t0 + 2

2
⌋+ ⌊y + 2

2
⌋

where

y = n−
2p+1∑
i=0

ti.

If no p satisfying the above conditions is found, set p =
−1.

2) If p ̸= −1, go to step 3. Else, compute the minimum
linear arrangements π(T ∗

0) and π(T−T0), and their costs
g(T ∗

0) and f(T − T0) respectively. Then, set g(T ∗) =
C(: T0) and π(T ∗) = π(: T0). Stop.

3) Find h(T ∗
i , Y

∗) for i = 0, 1, ..., 2p + 1, where Y ∗ =
T ∗ −

⋃2p+1
i=0 Ti. Define Pi = {0, 1, ..., 2p + 1} − {i}

and define ij as the jth smallest integer contained in
Pi. Determine:

g(T ∗) = min
i=0,1,...,2p+1

C(Ti2 , Ti4 , ..., Ti2p : Ti2p+1
, ..., Ti1)

and corresponding linear arrangement π(T ∗). Stop.
Part 3: Finding the minimum linear arrangement and its cost
for a rooted tree T ∗ and the tree T ∪ T which results from
joining the roots of T ∗ and T

∗
with an edge, where |V (T)| ≤

|V (T)|.
1) Find a center u of the tree T ∪ T in T .
2) Determine subtrees X,T1, T2, ..., of T ∪ T − u where
|V (Ti)| = ti and t1 ≥ t2 ≥ |V (X)| = x, |V (T)| =
n, |V (T ′)| = n′ ≤ n and X is the subtree in which T
is contained.

3) Suppose P is the path between u and the root r of T ∗

and P contains u = v0, v1, ..., vs = r. Suppose Xi is
the subtree of T ∪ T − vi which contains T . Set the

tree R∗
i = (T ∪ T −Xi)

∗ with vi as the root. Compute
q = q(T ∪ T), pi = p(R∗

i) and p′ = p((T ∪ T − T1)∗).
4) If n′ > n

3 , go to step 8. If pi = −1 for all 0 ≤ i ≤ s, go
to step 5. If q = 1, go to step 8. If x < t1, q = −1, p′ =
0, go to step 8. Go to step 7.

5) If x < t2, q = −1, p′ = −1, go to step 6. Go to step 8.
6) If p0 ≥ 0, go to step 7. If p0 = −1 and t2 ≥

∑
i>2 ti,

go to step 9. Go to step 10.
7) Compute g(T ∗), π(T ∗) and remember the cost and

minimum linear arrangements of the following trees, if
any:

a) R∗
0

b) S∗
i , the second largest subtree of R∗

i

c) T ∗
i

d) T − T1
Compute f(T ∪ T) based on the above data.

8) Compute f(T ∪T), π(T ∪T) and remember the cost and
minimum linear arrangements of the following trees, if
any:

a) T ∗
i

b) Ti∪W where W is a subtree of T ∪T that doesn’t
contain vertices in any of the 2q+1 largest subtrees
of T ∪ T − u

c) R∗
0

d) R0 − T1
e) Si, Ri −Ri−1

Compute g(T ∗) based on the above data.
9) Compute g(T ∗

1), h(T
∗
2 , (R0 − T1 − T2)

∗), f(T ∪ T −
T1 − T2), f(X − R0 − P). Set g(T ∗) = C(: T1) and
f(T ∪ T) = C(T1 : T2).

10) If q(R0−T1) = −1, compute g(T ∗
1), g(T

∗
2), h(T

∗
0 −T1−

T2, X
∗), f(X−R0−P). Else, compute g(T ∗

1), h(R
∗
0−

T1 − T2, X
∗), h(T ∗

2 , (W
′′)∗), f(X − R0 − P) where

W ′′ = R0 −
⋃2p′′+2
i=1 Ti and p′′ = p(R∗

0 − T1 − T2).
Set g(T ∗) = C(: T1) and f(T ∪T) = C(T1 : T2). Stop.

This algorithm has O(nλ) time complexity, where λ > log3
log2 .

2) Planar graphs: The first approach for this constraint in
the output was introduced by Iordanskii [5], who proposed the
below algorithm:
Let tree T = (V,E) with n vertices be represented by the list
of its edges. The minimal planar numbering algorithm runs as
follows:

1) Turn tree T into a rooted directed tree with its root in
the centroid of T (centroid of a tree is a node which if
removed from the tree would split it into a ”forest”,
such that any tree in the forest would have at most
half the number of vertices in the original tree.). Form
from every vertex vi ∈ V the list Γ−1

vi of its direct
predecessors. Weight of a vertex vi in the rooted directed
tree is defined to be the number of all predecessors of
vi.

2) Order the lists Γ−1
vi according to the weights of their

vertices.
3) Separate the chains σj , j = {1...l} s.t. they pass through

vertices of tree along the branches with maximal num-

bers of vertices.
4) Number the vertices of chains σj , j = {1...l} s.t. the

corresponding numbering ϕ put in the class Φ∗.
This algorithm has time complexity O(n).

3) Projective graphs: Two of the most recent algorithms for
the MLA problem were proposed last year by Lluı́s Alemany-
Puig, Juan Luis Esteban and Ramon Ferrer-i-Cancho [6].
Before describing the first one, which ends up in a projective
graph, we firstly analyze the main components-functions of
it (the numbering of the below sub-algorithms follows the
numbering of the authors):

The algorithm below calculates recursively a displacement
of all nodes with respect to the placement of the centroidal
vertex of the whole tree in the linear arrangement.

1 Algorithm 3.2.
2 Function EMBED_BRANCH(Lc, v, base, dir, relPos)
3 Input: Lc is the sorted adjacency list for T c, v is

the root of the subtree to be arranged, base is
the displacement for the starting position of
the subtree arrangement, dir is a boolean
variable which defines whether v is to the left
or to the right of its parent.

4 Output: relPos contains the displacement from the
centroidal vertex of all nodes of the subtree.

5

6 Cv ← Lc[v]
7 before← after ← 0
8 under_anchor ← 0
9 for i = 1 to |Cv | with step 2 do:

10 vi, ni ← Cv [i]
11 under_anchor ← under_anchor + ni

12 base← base+ dir ∗ (under_anchor + 1)
13 for i = |Cv | downto 1 do:
14 vi, ni ← Cv [i]
15 if i is even then:
16 EMBED_BRANCH(Lc, v, base− dir ∗ before,
17 −dir, relPos)
18 before← before+ ni

19 else:
20 EMBED_BRANCH(Lc, v, base+ dir ∗ after,
21 dir, relPos)
22 after ← after + ni

23 relPos[v]← base
24

The algorithm 3.2. has time and space complexity O(n).

The algorithm below recursively calculates the size of
subtrees for rooted trees. The term s(u, v) refers to the size
of the subtree Tuv , which is the subtree of Tu rooted at v.

1 Algorithm 4.1: Calculation of size of subtrees for
rooted trees.

2 Function COMP_S_RT_REC(T r, (u, v))
3 Input: T r is the rooted tree, (u,v) is a directing

edge.
4 Output: s is the size of T r

v in vertices and
S = {(u, v, s(u, v))∥(u, v) ∈ E(T r

v)}.
5

6 s← 1
7 for w ∈ neighbors of v do:
8 (s, S′)← COMP_S_RT_REC(T r, (v, w))
9 s← s+ s′

10 S ← S
⋃

S′

11 S ← S
⋃

(u, v, s)
12 return (s, S)
13

14 Function COMPUTE_S_RT (T r)
15 Input: T r is the rooted tree
16 Output: S = {(u, v, s(u, v))∥(u, v) ∈ E}
17

18 S ← ∅
19 for v ∈ neighbors of v do:
20 (_, S′)← COMP_S_RT_REC(T r, (r, v))
21 S ← S

⋃
S′

22 return S

The algorithm 4.1. has time and space complexity O(n).

The algorithm below constructs the rooted sorted adjacency
list of a rooted tree T r.

1 Algorithm 4.2: Calculation of the sorted adjacency
list for rooted trees.

2 Function SORTED_ADJACENCY _LIST_RT (T r)
3 Input: T r is the rooted tree.
4 Output: L is the decreasingly-sorted adjacency list

of T r.
5

6 S ← COMPUTE_S_RT (T)
7 Sort the tuples (u, v, s) in S decreasingly by s

using counting sort.
8 L← {∅}n
9 for (u, v, s) ∈ S do:

10 L[u]← L[u]
⋃
(v, s)

11 return L

The algorithm 4.2. has time and space complexity O(n).

We now present the main algorithm for the projective case:

1 Algorithm 4.3: Linear time calculation of an optimal
projective arrangement.

2 Function HS_PROJECTIV E(T r)
3 Input: T r is the rooted tree.
4 Output: π is an optimal projective arrangement.
5

6 Lr ← SORTED_ADJACENCY _LIST_RT (T r)
7 relPos← {0}n
8 leftSum← rightSum← 0
9 for i = k downto 1 do:

10 if i is even:
11 EMBED_BRANCH(Lr, vi, rightSum, 1,
12 relPos)
13 rightSum← rightSum+ ni

14 else:
15 EMBED_BRANCH(Lr, vi,−leftSum,−1,
16 relPos)
17 leftSum← leftSum+ ni

18 π ← {0}n
19 π(r)← leftSum+ 1
20 relPos[r]← 0
21 for each vertex v do:
22 π[v]← π[r] + relPos[v]
23 return π

The algorithm 4.3. has time complexity O(n).

The authors also suggested one more algorithm which ends
up in a planar graph. We will present it in the same way
as above by describing the main functions of it. With a few
changes, the modified algorithm can lead us to a projective
graph as we describe below.
The algorithm below is quite similar to the Algorithm 3.2 we
presented above with the only difference that it refers to free
trees.

1 Algorithm 2.1: Calculation of directional sizes for
free trees.

2 Function COMP_S_FT_REC(T, (u, v))
3 Input: T is a free tree, (u, v) is a directing edge.
4 Output: s is the size of Tu

v ∗ in vertices and
S = {(u, v, s(u, v)), (v, u, s(v, u))∥(u, v) ∈ E(Tu

v ∗)}
5 s← 1
6 for w ∈ neighbors of v do
7 if w ̸= u :
8 (s′, S′)← COMP_S_FT_REC(T, (v,w))
9 s← s+ s′

10 S ← S ∪ S′

11 S ← S ∪ {(u, v, s), (v, u, n− s)}
12 return (s, S)
13

14 Function COMP_S_FT (T)
15 Input: T is a free tree.
16 Output: S = {(u, v, s(u, v)), (v, u, s(v, u))∥(u, v) ∈ E}
17

18 S ← ∅
19 Choose an arbitrary vertex u∗.
20 for v ∈ neighbors of u∗ do:
21 (_, S′)← COMP_S_FT_REC(T, (u∗, v))
22 S ← S ∪ S′

23 return S

The algorithm 2.1. has time and space complexity O(n).

Simirarly to the algorithm 4.2, the algorithm below calcu-
lates a sorted adjacency list for free trees.

1 Algorithm 2.2: Calculation of the sorted adjacency
list for free trees.

2 Function SORTED_ADJACENCY _LIST_FT (T)
3 Input: T is a free tree.
4 Output: L is the decreasingly-sorted adjacency list

of T.
5

6 S ← COMP_S_FT (T)
7 Sort the tuples (u, v, s) in S decreasingly by s using

counting sort.
8 L← {∅}n
9 for (u, v, s) ∈ S do:

10 L[u]← L[u] ∪ (v, s)
11 return L

The algorithm 2.2. has time and space complexity O(n).

The algorithm below finds a centroidal vertex of the free
tree.

1 Algorithm 2.3: Calculation of a centroidal vertex of
a free tree.

2 Function FIND_CENTROIDAL_V ERTEX(T, L)
3 Input: T is a free tree, L is the sorted adjacency

list of T.
4 Output: The function finds a centroidal vertex of T.
5

6 Choose an arbitrary vertex u.
7 while true do:
8 (v, s)← largest entry in L[u]
9 if s > n/2 then u← v

10 else return u
11

12 Function FIND_CENTROIDAL_V ERTEX(T)
13 Input: T is a free tree.
14 Output: The function finds a centroidal vertex of T.
15

16 L← SORTED_ADJACENCY _LIST_FT (T)
17 return FIND_CENTROIDAL_V ERTEX(T, L)

The algorithm 2.3. has time and space complexity O(n).

Table I
MLA ALGORITHMS

Algorithm Characteristics
Author Input Output Time complexity
Amaral Small number of vertices - exponential

Shiloach undirected trees - O(n2.2)

Chung undirected trees, rooted trees - O(n2) or O(nλ) with λ > log3
log2

Iordanskii undirected trees planar graph O(n)
Alemany-Puig, Esteban, Ferrer-i-Canch undirected trees, rooted trees planar, projective graph O(n)

We now present the main function for this algorithm.
Algorithm 4.6. calculates the arrangement of the input tree
T r using intervals of integers [a, b], where 1 ≤ α ≤ b ≤ n,
that indicate the first and the last position of the vertices of a
subtree in the linear arrangement. First of all, the first loop is
responsible for arranging all immediate subtrees of T ru . Then,
we check if the immediate subtree we examine right now is to
be arranged in the available interval furthest to the left or to
the right of its parent u and we change the interval accordingly.
The variable side is initialized according to the side to which
u has been placed with respect to its parent and it gets the
opposite value at the end of the loop. Before that, we need
to update the limits of the arrangement of T ru by increasing
or decreasing the left or the right limit accordingly, which is
determined by the value of the variable size. In the end, when
all immediate subtrees have been arranged, only the root node
u has to be arranged. But for it, α = b, so π[u] = α.

1 Algorithm 4.6: Optimal arrangement of a tree
according to its sorted adjacency list.

2 Function ARRANGE(Lr, u, τ, α, b, π)
3 Input: Lr is a rooted sorted adjacency list, u is

the root of the subtree to be arranged, τ is the
position of u with respect to its parent, [α, b]
is the interval of positions of the arrangement
where to embed T r

u , π is the partially constructed
arrangement.

4 Output: The output is π updated with the optimal
projective arrangement for T r

u in [α, b].
5

6 Cu ← Lr[u]
7 if τ is right then side← right
8 else side← left
9 for i from 1 to |Cu| do:

10 v, nv ← Cu[i]
11 if side is left:
12 τnext ← left
13 αnext ← α
14 bnext ← α+ nv − 1
15 else:
16 τnext ← right
17 αnext ← b− nv + 1
18 bnext ← b
19 ARRANGE(Lr, v, τnext, αnext, bnext, π)
20 if side is left:
21 α← α+ nv

22 else:
23 b← b− nv

24 side← opposite_side
25 π[u]← α

The algorithm 4.6. has time and space complexity O(n).
We finally present the 2 main algorithms for the problem.
The first one ends up in a projective arrangement while the

second one ends up in a planar arrangement:

The Algorithm 4.4. firstly finds the sorted adjacency list for
rooted trees by calling Algorithm 4.2. and then it calls the
Algorithm 4.6. by giving it an empty initial arrangement. The
choice of the starting side here is arbitrary, we could choose
left as well.

1 Algorithm 4.4: Linear time calculation of an optimal
projective arrangement.

2 Function ARRANGE_OPTIMAL_PROJECTIV E(T r)
3 Input: T r is a rooted tree.
4 Output: π is an optimal projective arrangement.
5

6 Lr ← SORTED_ADJACENCY _LIST_RT (T r)
7 π ← {0}n
8 ARRANGE(Lr, r, right, 1, n, π)
9 return π

As for the planar case, the algorithm below firstly finds the
sorted adjacency list for free trees by calling Algorithm 2.2.
Then, it finds a centroidal vertex of T and as above, it calls
the recursive Algorithm 4.6. with the suitable initial parameters
(again the choice of the variable side is arbitrary).

1 Algorithm 4.5: Linear time calculation of an optimal
planar arrangement.

2 Function ARRANGE_OPTIMAL_PLANAR(T)
3 Input: T is a free tree.
4 Output: π is an optimal planar arrangement.
5

6 L← SORTED_ADJACENCY _LIST_FT (T)
7 c← FIND_CENTROIDAL_V ERTEX(T, L)
8 Lc ← ROOT_LIST (L, c)
9 π ← {0}n

10 ARRANGE(Lc, c, right, 1, n, π)
11 return π

Both algorithms have time and space complexity O(n).
One very useful result which can be easily obtained from

the above algorithms is that an optimal planar arrangement
for T is an optimal projective arrangement for T c, where c
is a centroidal vertex of T (Algorithm 2.3.). But of course an
optimal planar arrangement for T is not always an optimal
projective arrangement for T r where r ̸= c, because r may be
covered.
Table I summarizes the characteristics of all the aforemen-
tioned algorithms.

III. APPROXIMATION TECHNIQUES (HEURISTICS)
A. Spectral sequencing

The Spectral sequencing approximation technique utilizes
the properties of the eigenvalues of the Laplacian matrix of a
graph to provide valuable information about the latter.

First, we are going to state some definitions necessary for
the approximate solution.
Given a simple and undirected graph G(V,E) where |V | = n,
we call ψ the bijective function and discrepancy σp(G,ψ) s.t.

ψ : V (G)→ 1, 2, ..., n

σp(G,ψ) := (
∑

(u,v)∈E

|ψ(u)− ψ(v)|p)
1
p , for p ∈ (0,+∞)

σ∞(G,ψ) := max
(u,v)∈E

|ψ(u)− ψ(v)|

Also, we call min− p− sum the minimal value

σp(G) := min
ψ
σp(G,ψ), p ∈ (0,∞]

It is readily understood that the minimum linear arrangement
problem is identical to finding the min − 1 − sum if one
just specifies ψ as the arrangement π that has been used
throughout this analysis. The Laplacian matrix of graph G
can be computed from the formula below:

L(G) := D(G)−A(G)

, where A(G) is the adjacency matrix (square matrix of order
n) s.t.

A(G)[u, v] =

{
1, if nodes u, v are neighbors
0, otherwise

and D(G) is the diagonal matrix (square matrix of order n)
s.t.

D(G)[u, v] =

{
d(u) =

∑
k∈V A[u, k] if u = v

0 otherwise

The Laplacian eigenvalues i.e., the eigenvalues of L(G) are
denoted as λi and are enumerated in an increasing order and
repeated equal times to their multiplicity, that is λ1 ≤ λ2 ≤
... ≤ λn. According to Juvan [7], one can apply the following
steps to find an approximate solution to our problem (and other
optimal linear labeling problems):

1) Compute matrices A(G), D(G) and subsequently the
Laplacian matrix L(G).

2) Find the laplacian eigenvalues and sort them in increas-
ing order, λ1 ≤ λ2 ≤ ... ≤ λn.

3) Compute the eigenvector x(2) (Fiedler vector) which
corresponds to the second smallest laplacian eigenvalue
λ2.

4) Determine labeling ψe s.t.

If x(2)u ≤ x(2)v then ψe(u) ≤ ψe(v)

In simple words, labeling ψe for node u is the ranking in
ascending order of the value of the laplacian eigenvector x(2)

for node u. In the case where there exist u, v ∈ V s.t. x(2)u =
x
(2)
v , one can simply choose arbitrarily their relative order.

An approximate solution to the MLA problem is this labeling
ψe = π with a lower bound

LBSO := ⌈λ2(G)
n2 − 1

6
⌉

B. Random and Normal layouts

Maybe the simplest way to generate approximate solutions
consists in returning a random feasible solution [8]. For
example, one can assign a random label to each vertex (random
layout) or preserve the label of each input (normal layout), i.e.

π[i] = i,∀i ∈ {1...n} (10)

It is reasonable to understand that such methods give us
bad results in general. On the other hand, the main advantage
of them is that they lead us to feasible and time negligible
solutions.

C. Successive Augmentation heuristics

The main idea of this family of heuristics [8] is that a partial
layout is extended, vertex by vertex, until all vertices have been
labeled, at which point the output cannot be further improved.
More precisely, the best possible free label is assigned to the
current vertex at each iteration. In the beginning, we assign
label 0 to an arbitrary vertex. Then, at each step, a new
vertex is added to the partial layout, to its left or to its right,
according to the way that minimizes the current partial cost of
the solution. The new vertex will be placed either to the left
or to the right extreme of the layout according to the result of
a function called Increment(G, π, i, vi, x), which returns the
increment of the partial cost of the layout if we assign label
x to vertex vi. The steps of the algorithm are shown below:

1 Function Increment(G, π, i, vi, x):
2 π[vi] = x
3 c = 0
4 for j from 1 to i do:
5 if (vi, vj) ∈ E:
6 c = c+ |π[vi]− π[vj]|
7 return c
8

9 Function Successive_Augmentation(G):
10 Choose an arbitrary ordering of vertices

v1, v2, ..., vn
11 π[v1] = 0
12 left = −1
13 right = 1
14 for i from 2 to n do:
15 left_inc = Increment(G, π, i, vi, left)
16 right_inc = Increment(G, π, i, vi, right)
17 if left_inc < right_inc:
18 π[vi] = left
19 left = left− 1
20 else:
21 π[vi] = right
22 right = right+ 1
23 for i from 1 to n do:
24 π[i] = π[i]− left
25 return π

As for the initial ordering of the vertices, apart from arbitrary,
it can also be normal (i.e. according to the initial numbering
of vertices) or it can even follow BFS or DFS of the graph.
If we represent the graph using adjacency lists, the time com-
plexity of Successive Augmentation heuristics is O(n2logn).

D. Local Search heuristics

Local Search [8] is a very important tool to approximate
many combinatorial problems, especially due to its simplicity

and performance. The main idea here is to iterately improve
a (usually) random generated solution by performing local
changes on its combinatorial structure.
In order to execute Local Search in an optimization problem,
we need to define several things first. First of all, we need a
set of feasible solutions (S = {σi}). Then, we need to specify
which is the cost function, that is a function f : S → R+

which maps every feasible solution to a numerical value.
Finally, we need to define the concept of “neighborhood”,
which is a relation between feasible solutions that are “close”
in some sense.

A general aspect of the Local Search Algorithm is shown
below:

1 Function Local_Search():
2 Select an (arbitrary) feasible solution π for

the problem.
3 while (a condition is not satisfied) do:
4 Select a neighbor of π, π′

5 Find the difference δ = f(π)− f(π′)
6 if δ is acceptable, π = π′

7 return π

For our problem, the set of feasible solutions S is the set of
all permutations of size n, while the cost function f is the
LA(G, π). There are several ways in which we could define
the concept of “neighborhood” in the MLA problem, some of
which are the following:
Definition 1: Two layouts are neighbors if one can move from
one to another by flipping the labels of any pair of nodes in
the graph.
Definition 2: Two layouts are neighbors if one can move from
one to another by flipping the labels of two adjacent nodes in
the graph.
Definition 3: Two layouts are neighbors if one can move from
one to another by rotating the labels of any triplet of nodes in
the graph.
The selection of the definition of the neighborhood is of course
a complicated subject, because there are trade-offs between the
different plans. Some of them may be very time-consuming,
while others may be stuck in moderate solutions because of a
small number of available neighbors.

E. Hillclimbing

The hillclimbing heuristic [8] operates as follows: first, it
selects an initial arbitrary layout at random. Then, it generates
random moves from this state and the moves are accepted
if they result in an improved cost. If no such moves are
found after a specified max number of efforts, the algorithm
terminates and returns the current solution. The steps of the
hillclimbing heuristic are shown below:

1 Function Hill_Climbing(G,max_iterations):
2 current_tries = 0
3 Generate an initial random layout π.
4 current_cost = LA(G, π)
5 while (current_tries < max_iterations) do:
6 current_tries = current_tries+ 1
7 u = random_int(1, n)
8 v = random_int(1, n)
9 while (v = u), v = random_int(1, n)

10 π′ = flip(u, v, π)

11 /* it returns the permutation if we flip the
labels of nodes u, v. */

12 if f(π′) < f(π):
13 π = π′

14 current_tries = 0
15 return π

Apart from flipping the labels of just 2 arbitrary nodes, we
could use the alternate definitions of neighborhood as we saw
above and for example choose 3 random nodes and flip this
trio. As it is understood, the parameter of max iterations
should be defined. If it is too small, the algorithm will
terminate in negligible time but in general it will give us bad
results. If it is too high, the algorithm’s execution time rises
quickly.

F. A logn-approximation algorithm

Here we present an approximation algorithm proposed by
Satish Rao and Andrea W. Richa [9]. First of all, the algorithm
which we will present solves a variation of the MLA problem
we presented in the introduction, where the edges are weighted
with weights greater than or equal to 1. There are no important
changes in the description of the problem, except from the
formula of the objective function, which now is:∑

(i,j)∈E

|π(i)− π(j)| · w(i, j) (11)

where w(i, j) represents the weight of the edge (i, j). We will
firstly give some definitions before proceeding to the main
algorithm.
The notion of a level according to some l follows: given a
node v, an edge (i, j) belongs to level x with respect to v if
and only if dist(i, v) ≤ x and dist(j, v) > x for any x ∈ N .
According to the above definition, there might be edges which
belong to more than one level, while other edges may not
belong to any level. Moreover, the weight of a level i, i.e. ρi
is defined as the sum of the weights of the edges at level i.
We are now ready to present the steps of algorithm, which are
shown below:

1) Select any node v in the graph.
2) Assign the edges into levels: An edge (i, j) belongs to

level x with respect to v if and only if dist(i, v) ≤ x
and dist(j, v) > x for any x ∈ N .

3) Partition levels according to their weights: Without loss
of generality, we assume that logW is an integer (if
not, we can take ⌈logW ⌉). We partition the levels into
logW groups, according to indices assigned to the levels.
Let ak for all k in [(logW) + 1]. Level i has index k,
k in [logW] if and only if ρi belongs to the interval
(ak, ak+1]. Select an index k s.t. there are m ≥ n

4∗logW
levels with this index.

4) Cut along selected levels: For all i, let level ai be the
ith level of index k, in increasing order of distances to
v. Let Hi be the subgraph induced by the nodes that
are at distance greater than ai and at most ai+1 from
v (H0 is the subgraph induced by the nodes that are at
distance at most a1 and Hm is the subgraph induced by

the nodes that are at distance greater than am) from v.
Let ni be the number of nodes in Hi.

5) Recursive step: We call the algorithm recursively on
each Hi, obtaining a linear arrangement σi for the ni
nodes in this subgraph.

6) Combine solutions: Last but not least, we combine the
linear arrangements obtained from each Hi and we end
up in a solution as shown below:

(σ(1), ..., σ(n)) =

(σ0(1), .., σ0(n0), σ1(1), .., σ1(n1), .., σκ(1), .., σκ(nκ))

The algorithm runs in polynomial time, since each recursive
step runs in polynomial time and at each step, we decompose
a connected component into at least 2 connected components.
It can be shown that the cost of a solution in MLA problem
obtained by the above algorithm is an O(logn) factor of the
cost of the optimal MLA of the graph.

G. Spreading metrics

The Spreading metrics approximation technique exploits the
fact that the MLA problem can be analysed as a finite metric
space of negative type and be addressed with semi-definite
programs. In this case, the problem can be redefined through
a spreading metric relaxation, that is given a weighted graph
G(V,E,w) we want to minimize the value below:∑

(u,v)∈E

w(u, v) · d(u, v)

with these constraints in mind:
• For ∀(u, v) with u, v ∈ V , d(u, v) ≥ 1

For ∀S ⊆ V with |S| ≥ 2, and ∀u ∈ S,∑
v∈S

d(u, v) ≥ |S|
2

5

• (V, d) is a metric space which means that ∀(u, v, w) with
u, v, w ∈ V ,

d(u, v) ≤ d(u,w) + d(w, v)

If d(u, v) is defined as d(u, v) = ||xu − xv||22 (squared
Euclidean norm, i.e. ||u||22 =

∑
i u

2
i) with xu ∈ Rn for

∀u ∈ V , then the program optimizing the sum can be solved
with Semidefinite programming (SDP) and the metric space
(V, d) is of negative type. Additionally, a metric space (V, d)
is called ϵ−separable if for ∀S ⊆ V with |S| = k ≥ 2, there
exist two A,B ⊆ S, s.t. A,B ̸= ∅ and |A|, |B| = Ω(k), and
d(A,B) ≥ ϵk, where d(A,B) = minα∈A,b∈B d(α, b).
Moreover, we mention the definitions below:

WS(d) =
∑

(u,v)∈E:u,v∈S

w(u, v)d(u, v)

W (d) =WV (d) =
∑

(u,v)∈E

w(u, v)d(u, v)

Wk =
∑

(u,v)∈E,u∈Ak,v∈Bk

w(u, v)

which is the cost of the edges that cross a cut Ck for which
the following holds:

Ck ∈ {C0, ..., Ct} for t ≥ Ω(ϵn)

where Ci separates the vertices of V into two sets
Ai = {u ∈ V : d(v,A) ≤ i}

and
Bi = V \Ai

The algorithm [10] is described below based on two exclu-
sive cases:

• There ∃k ∈ {0, ..., t}, s.t. Wk ≤ W (d)
nlogn . The approximate

solution to the minimum linear arrangement problem is
found by following the steps below:

1) Find recursively a linear arrangement for Ak.
2) Find recursively a linear arrangement for Bk.
3) Concatenate the results.

The cost is computed as the sum of the cost of edges
within Ak, the cost of edges within Bk and the concate-
nation cost of edges connecting Ak and Bk

• For ∀k ∈ {0, ..., t},Wk > W (d)
nlogn . For this case an

approximate solution can be determined as follows:
1) Define buckets B0, ..., Bl with l = O(loglogn) s.t.

the bucket Bq contains all cuts Ck when

W q ≤Wk ≤ 2W q

where

W q = 2q
W (d)

nlogn

There ∃Bq which contains at least r =
Ω(ϵn/loglogn) cuts.

2) By applying all the cuts in Bq to V , determine
V1, V2, ..., s.t. Vi∩Vj = ∅ and

⋃
i Vi = V . The order

of Vi’s is natural linear according to the relative
order of the corresponding cuts.

3) Find minimum linear arrangement for ∀Vi recur-
sively.

4) Concatenate the arrangements of the above step in
the defined natural order.

The cost is computed in a similar way as in the other
case.

This algorithm produces solutions under an approximation
ratio of O(

√
lognloglogn) for general graphs G(V,E) with

|V | = n.

IV. EXPERIMENTAL EVALUATION

In this section, we present some experimental results aim-
ing to evaluate the performance of some of the considered
methods.

A. Experimental environment

The core of the programs has been written in Python
programming language, using Anaconda 4.10.3 and more
precisely Spyder 5.1.5. In order to obtain the optimal solution
for each input graph, we used the Linear Arrangement

Library (LAL) implemented by Lluı́s Alemany-Puig, Juan
Luis Esteban and Ramon Ferrer-i-Cancho. This library uses
the algorithms of Chung [4] (the O(n2) algorithm) and
Shiloach [2] (with its correction in [3]) which were discussed
in Section II, in order to find the optimal solution for rooted
trees. All experiments have been run on a PC with AMD
Ryzen 7 3700U with Radeon Vega Mobile Gfx, 2.30 GHz
processor and 12.0 GB (9.95 GB usable) memory with a
Windows 11 Operating System.

B. Input Graphs

The input graphs are shortly shown in Table II. They
are extracted from the GitHub repository (https://github.com/
jordi-petit/graphs-minla), where Jordi Petit [8] has provided
a set of graphs originally used to benchmark the MinLA
problem. These graphs are very sparse and some of them
originate from fields such as VLSI circuits and graph-drawing
competitions. Apart from them, we also chose to generate
random graphs, so we decided to generate Random Graphs
based on the Gilbert Model, Random Graphs based on the
Erdos-Renyi model, as well as Random Geometric Graphs.
The reason for this decision is that such graphs might be
amenable to a probabilistic analysis and as a result, general
conclusions can be extracted from their study. Finally, we
chose as an input graph the network of American football
games between Division IA colleges during regular season
Fall 2000, as compiled by M. Girvan and M. Newman as an
alternate network from real life, as well as a 10-hypercube and
a complete binary tree with 10 levels.
It should be noted that we processed all these graphs, in
order to convert them into trees by producing their minimum
spanning tree, so that the LAL can find the optimal solution
for them.
All the aforementioned graphs are chosen for the reason be-
low: First of all, the strong majority of them are “large”, with
the meaning that cannot be optimally solved by a brute-force
algorithm in reasonable time. As a result, the chosen graphs
have 500-1000 nodes (except from some graphs collected from
the field of graph-drawing competitions). It was desirable to
examine graphs with more than 1000 nodes but unfortunately
our computational power was not enough for this; however,
we strongly believe that even with these input graphs, we can
extract some very useful conclusions regarding the quality
of the solutions given by heuristics, as well as their time
complexity.
In order to help to reproduce and verify the measure-
ments and the code mentioned in this research, the
code, instances and raw data are available on the Inter-
net at our GitHub repository (https://github.com/IlianaXn/
minimum-linear-arrangement-experiments).

C. Evaluation of the heuristics

The heuristics chosen to be implemented in our research
are Random Layout, Normal Layout, Spectral Sequencing and
the 3 versions of Local Search (with the 3 definitions of

the term neighborhood as discussed in Section III). In order
to evaluate the performance of these heuristics, summarized
visualized results are given in Appendix. Here, we present
some important observations that are worth discussing.
First of all, the results produced by Random and Normal layout
are far from the optimal solution. This is obviously expected
but we have to keep in mind that these results can be used in
order to evaluate the quality of solutions given by the other
heuristics.
Concerning the Spectral Sequencing, it can be easily observed
that it is a method which produces moderate to good results
in short time. It should also be mentioned that it is the
only non-randomized algorithm which was implemented in
this research, so it gives the same result whenever the input
graph is the same. On the other hand, in our experiments we
noticed that in some circumstances where the input graph is
too large, it raises an Exception referring to lack of Memory.
It is totally understood as it uses the Laplacian Matrix and
works on eigenvalues on very large tables, so it needs strong
computational power.
The most important observations concern the Local Search
heuristic and the appropriate selection of the neighborhood
of the current permutation. The simulations showed that the
version of Local Search that gives the best result in the strong
majority of graph instances is the version 2, that is the simple
swap of 2 randomly chosen labels of the current permutation.
The worst of all seems to be the version 2b, that is the swap of
2 labels whose nodes are adjacent in the graph. If we wanted
to compare version 2 and version 3, we can conclude that the
version 3 neighborhood will be stuck at fewer local minima
than the version 2 neighborhood (it is easily shown with
the time gap between these 2 versions). This is reasonable,
because in version 3, it is more difficult to find good moves
than in version 2.
The quality of solutions provided by version 2 of Local
Search is quite satisfying. For all graphs, it provides the best
approximation result among the implemented heuristics, and
especially in smaller graphs the gap between its solution and
the optimal solution is quite small. However, it should be
emphasized that it demands the longest period of time in order
to be executed among all heuristics here. Some executions of
this algorithm took us hours to complete.
One important parameter in the Local Search algorithm is the
stopping criterion. It determines when the algorithm should
stop and return the best current result. Here, the stopping
criterion refers to the maximum number of attempts where
we didn’t manage to find a better solution than the current
solution. As it is obvious, the greater the max tries is, the
better the result that the algorithm will return will be. On the
other hand, the greater the max tries is, the longer the time
period of execution will be. So here comes up an apparent
trade-off. For our experiments, we tried to find the best balance
between the quality of solution and the time complexity of
it. As a result, we defined the maximum number of attempts
equal to 5000. For smaller number of max tries, e.g. 2000,
the result provided by Local Search was worse even than the

https://github.com/jordi-petit/graphs-minla
https://github.com/jordi-petit/graphs-minla
https://github.com/IlianaXn/minimum-linear-arrangement-experiments
https://github.com/IlianaXn/minimum-linear-arrangement-experiments

Table II
INPUT GRAPHS

Name Characteristics
Nodes Edges Description

bintree10 1023 1022 a complete binary tree with 10 levels
c1y 828 1749 graph from VLSI design
c2y 980 2102 graph from VLSI design

football 115 613 American Football Games
gd95c 62 144 graph from graph-drawing competitions
gd96b 111 193 graph from graph-drawing competitions
gd96c 65 125 graph from graph-drawing competitions

gd956d 180 288 graph from graph-drawing competitions
hc10 1024 5120 10-hypercube

randomA1 500 2454 Random Graph (Gilbert) with n=500 and p=0.02
randomA2 500 5004 Random Graph (Gilbert) with n=500 and p=0.04
randomA3 500 800 Random Graph (Erdos-Renyi) with n=500 and M=800
randomG1 500 2019 Random Geometric Graph with n=500 and radius=0.075
randomG2 500 5712 Random Geometric Graph with n=500 and radius=0.125

result of Spectral Sequencing. With the execution of Local
Search with max tries equal to 10000 to our small graphs, we
noticed that the result provided especially from version 2 was
approximately close to the optimal solution.
One last observation concerning Local Search is that it is
a randomized algorithm, that is it depends on the initial
permutation of labels. If we run twice the algorithm with
the same graph as input, we will surely get different result,
which is determined by the initial permutation. Furthermore,
its execution time varies. If the initial permutation is close to
the optimal, the algorithm will find a very good permutation
in short time, but if the initial permutation is far from the
optimal, it may run for hours by gradually improving the
current solution. As we can see, the selection of a “good”
initial permutation is very important. As a result, it could
create thoughts for future work especially in the Local Search
Algorithm: How to find an initial permutation of labels (not at
random as here) which will be “close enough” to the optimal
permutation.
As for the effect of the input graphs, it is totally reasonable
that the larger the input graphs are, the greater the solution
gap between optimal and heuristics is.

REFERENCES

[1] Amaral, A.R.S. ,“A mixed 0-1 linear programming formulation for the
exact solution of the minimum linear arrangement problem”, Optim Lett
3, 513–520, 2009.

[2] Y. Shiloach, “A minimum linear arrangement algorithm for undirected
trees”, SIAM J. Cam, 8, 15-32, 1979.

[3] Esteban J L and Ferrer-i-Cancho R, “A correction on Shiloach’s algo-
rithm for minimum linear arrangement of trees”, SIAM J. Comput., 46,
1146–51, 2015.

[4] F.R.K. Chung, “An optimal linear arrangements of trees”, Computers &
Mathematics with Applications,10,43-60, 1984.

[5] M.A.Iordanskii, “Minimal numberings of the vertices of trees”, Dokl.
Akad. Nauk SSSR, 218, 2, 272-275, 1974.

[6] Lluı́s Alemany-Puig, Juan Luis Esteban, Ramon Ferrer-i-Cancho, “Min-
imum projective linearizations of trees in linear time”, Information
Processing Letters, Volume 174, 2022.

[7] M. Juvan, B. Mohar, “Optimal linear labelings and eigenvalues of
graphs”, Discr. Appl. Math. 36, 1992.

[8] Jordi Petit, “Experiments on the minimum linear arrangement problem”.
ACM J. Exp. Algorithmics 8, Article 2.3, 2003.

[9] Rao, S., Richa, A.W. “New approximation techniques for some linear
ordering problems”. SIAM J. Comput. 34(2), 388–404, 2004.

[10] Feige, Uriel & Lee, James, “An improved approximation ratio for the
minimum linear arrangement problem”, Information Processing Letter,
101, 26-29, 2007.

APPENDIX

Below, we present the plots produced based on the results
of the experiments mentioned in section IV. Each figure is
dedicated to one input graph and contains two plots. The first
one (on the left) shows the ratio of the obtained result to the
optimal result for each implemented heuristic. The second one
(on the right) shows the required time for the execution of each
heuristic, and additionally the execution time of the precise
algorithms (Chung’s and Shiloach’s). It should be noted that
sometimes the second plot seems to be missing several values.
That is not the case; it simply implies that the execution time
of these algorithms / heuristics is so smaller, and therefore
negligible, than the others’ ones that it cannot be depicted.

Figure 1. Bintree10

Figure 2. c1y

Figure 3. c2y

Figure 4. football

Figure 5. gd95c

Figure 6. gd96b

Figure 7. gd96c

Figure 8. gd96d

Figure 9. hc10

Figure 10. randomA1

Figure 11. randomA2

Figure 12. randomA3

Figure 13. randomG1

Figure 14. randomG2

	Introduction
	Existing algorithms
	Small number of vertices
	Undirected trees (or rooted trees)
	No constraints in output
	Planar graphs
	Projective graphs

	Approximation techniques (heuristics)
	Spectral sequencing
	Random and Normal layouts
	Successive Augmentation heuristics
	Local Search heuristics
	Hillclimbing
	A logn-approximation algorithm
	Spreading metrics

	Experimental evaluation
	Experimental environment
	Input Graphs
	Evaluation of the heuristics

	References
	Appendix

